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Dynamics of unwinding of a simple entanglement 

F W Wiegelt and J P J MichelsS 
t Center for Theoretical Physics, Twente University, PO Box 217, 7500 AE Enschede, The 
Netherlands 
$Van der Waals Laboratory, University of Amsterdam, PO Box 20216,1000 HE Amsterdam, 
The Netherlands 

Received 3 February 1987 

Abstract. The dynamics of unwinding of a simple entanglement is studied in two ways, 
firstly using an optimal path approximation in the Rouse model and secondly by simulating 
the movement of a more realistic model using Brownian molecular dynamics. 

1. Introduction 

The study of the dynamical behaviour of a system of entangled macromolecules leads 
to problems of staggering mathematical complexity. The few authors who have faced 
these problems have had to take refuge in extensive computer simulations which, 
indeed, provide numerical answers to some of the most urgent questions. For example, 
the dynamics of three-branched star molecules was studied numerically by Needs and 
Edwards (1983), also cf Needs (1983), and other authors have simulated related 
many-polymer systems with either the Monte Carlo or the molecular dynamics method. 

In this paper, we address a much simpler dynamical problem in which only a single 
polymer plays a role: a Gaussian chain is located in a plane and topologically entangled 
with a point of the plane. More generally, we consider a Gaussian chain in three- 
dimensional space. At t = 0, the chain is topologically entangled with some closed 
curve in space. The equilibrium statistical physics of the chain can be worked out 
analytically for a variety of geometries and chain-curve interactions (a  recent review 
of these models, methods and solutions can be found in Wiegel (1983)). In this paper 
we propose to study the dynamics of this model in two ways: (i) analytically by 
combining the Rouse (1953) model of polymer dynamics with the topological features 
of the entanglement and ( i i )  numerically by simulating the motion by molecular 
dynamics. In this way, one hopes to gain some insight into the peculiar way in which 
the topology interferes with the ordinary relaxation of the chain. 

The essential idea underlying the Rouse model is that, although the polymer chain 
as a whole can be out of equilibrium, any small part of it is so close to equilibrium 
that its elastic properties can be calculated from the equilibrium distribution. This 
leads to a model in which the polymer is represented by N mass points, each of which 
has mass m, friction coefficient y and represents no repeating units of mass mo. Between 
these mass points, linear entropic forces act corresponding to the Gaussian statistics 
of the various chain segments. 

Before applying the same idea to the dynamics of unwinding of a simple entangle- 
ment we summarise the results of the equilibrium theory for the basic case in which 
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the chain is located in a plane, and where the obstacle is at the origin of coordinates 
(this case will be considered throughout the rest of this paper). One end of the chain 
is kept fixed in a position with polar coordinates ( ro ,  eo), where 0 < r, < 03, -77 < Bo < 7 ~ .  

Let the other end have polar coordinates ( r ,  e) ,  where 0 is increasing by 277 for each 
counterclockwise turn around the origin, so -CO < 0 < +CO. If, for a particular configur- 
ation, e is found to have a value in the interval ( 2 n ~  - T, 2n77 + T )  we shall say that 
the polymer has entanglement index n. It has been shown that the equilibrium 
configuration sum Q(r,  e )  over all those polymer configurations which (i) start with 
( r o ,  e,), (ii) end with ( r ,  0 )  and (iii) have entanglement index n = 0, *l, * 2 , .  . . , is 
given by the integral 

The number of repeating units is No = Nn, and the length of a repeating unit is I (see 
figure 1). The I lk, denote the modified Bessel functions. In 8 2  we adapt the Rouse 
model to the topology of this situation. 

Figure 1. Basic geometry of the simple entanglement problem. 

The analytical study which is going to form the subject of § 2 cannot be pushed 
far enough to obtain explicit results. In view of this, we felt the need to supplement 
it with a numerical simulation. In § 3 we study the dynamics of unwinding with the 
Brownian molecular dynamics method which was used by us in a previous study of 
numerical hammagraphy (Michels and Wiegel 1986). 

2. Analytical considerations 

In the simplest 
the topological 
the 'force' F(r ,  

model for the dynamics of unwinding one would separate completely 
aspect from the frictional aspect. If the endpoint ( r , ,  6,) is kept fixed, 
0 )  on the other endpoint is an  entropic force equal to 

(2.1) F(  r, 6 )  = kB TIP 1n Q( r, e )  - c o < ~ < + c o .  

Here, kB is Boltzmann's constant and  T is the absolute temperature. If one moves all 
mass and hydrodynamic friction to the endpoint of the chain, its dynamics can be 
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described by a Langevin equation of the form 

d2r  d r  
dt2 d t  

M - = F -  f-+& (2.2) 

where M = Nm is the total mass, f is the total friction coefficient and E is a stochastic 
force simulating the heat motion of the solvent. Various comments are in order here. 

(a) In the absence of hydrodynamic interactions between the repeating units, the 
friction coefficient is simply given by 

f = Ny. (2.3) 

f f f o N "  (2.4) 

In the presence of hydrodynamic interactions one finds the empirical relation 

where f o  is a constant with the same dimension as f and where the exponent a is in 
the region 0.5-0.6, depending on the polymer-solvent interaction (Mijnlieff and Wiegel 
1978). 

(b) Note that the topological constraint is automatically taken into account when 
expression (2.1) is used for the entropic force: the fluctuations E can never sweep the 
chain across the obstacle at the origin because the 'potential' 

(2.5) 

tends to +CO for rJ.0 (this follows from ( 1 . 1 )  and the fact that the modified Bessel 
functions Ilk, vanish for rLO). Hence the dynamics which is implied by (2.1) and (2.2) 
has the desired property that the chain can only move around, and not through the 
obstacle at the origin. 

(c) Just as in the Rouse theory one notes that the acceleration term in (2.2) is of 
the order where T is a typical relaxation time. As the friction term is of the 
order of frT-', their ratio is of the order of M ~ ' T - ' .  As the typical relaxation time is 
of the order of N 2  this shows that (2.2) can be replaced by 

V( r, e )  = - k B T  In Q( r, 0 )  - m < e < + 0 0  

d r  
f - = F + &  

d t  

provided the polymer is very long. 
It is of interest to study the consequences of (2.6) in the presence, as well as in the 

absence, of the fluctuation term E .  These two cases are the analogues in the present 
problem of treating a mechanical problem with quantum mechanics or classical 
mechanics. Moreover, they are also analogous to treating an optical problem with 
wave optics or with geometrical optics. 

In the absence of the fluctuating term, (2.6) reduces to the integral equation 

r(  t )  = r(0) +- F (  r (  t ' ) )  dt ' .  (2.7) ; ld 
Although the complicated form of F makes an analytical treatment very difficult, one 
can approximate the solution in various limiting cases. 

( i )  r>> IJN,. In this case we can use the approximation 

Q ( r ,  0 )  = (constant) exp -- ( 3 
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from which the force is found using (2.1) 

2kBT 
F (  r )  = -- r 

No12 
(2.9) 

which is evidently independent of 6. Substituting this into (2.6) with E = 0, one finds 

d r  2kBT 
d t  No12f 
-- _-- 

with solution 

r (  t )  = r (0)  exp -- ( :;;4 
(2.10) 

(2.11) 

This initial part of the relaxation process consists of the polymer contracting radially 
towards the obstacle at r = 0, with a relaxation time 

No12f 
5-1 =- 

2kBT' 

Using (2.4) and the relation No= Nn,, one finds 

no12fo N o + l  
71 =- 

2kBT 

(2.12) 

(2.13) 

and hence an  N exponent in the region 1.5-1.6. In the Rouse model (2.3) one finds 
an N exponent equal to 2. 

(ii) ( 8  - e,) >> 1 .  Suppose the endpoint of the polymer has relaxed radially to the 
vicinity of the obstacle. This process has not changed the entanglement index, so for 
a highly entangled polymer one has ( e -  60) >> 1 .  In this case, the integral ( 1 . 1 )  is 
dominated by the contributions from values of lkJ<< 1 .  Hence we can substitute the 
asymptotic formula for the modified Bessel functions 

Ik(z) (z/2)kIO(z) Ikl<< 1 (2.14) 

(cf Abramowitz and  Stegun 1965, e.g. 9.6.10) to find 

-2 In( Tor/ N J 2 )  ( io'/2) [In( ror/ N 0 / 2 ) ] 2  + (6 - 
Q ( r ,  e) = ( rN0l2)- '  exp -- / e -  e,\ >> 1 .  (2.15) 

This final stage of the relaxation process consists of the endpoint unwinding itself 
around the obstacle. 

As we have assumed strong damping the endpoint will essentially move along the 
path of minimum potential energy. In order to find the shape of this path, we ask for 
which value of r the potential is minimal, given a fixed value of 6 - 0,. In view of 
(2.5) the minimum of the potential V corresponds to the maximum of Q. Solving the 
equation ( a Q / a r ) ,  = 0, one  finds that the path followed by the endpoint is approximately 
described by a spiral of the form 

It is easy to verify that the total length of this spiralling path is 

(2.16) 

- l2 2 1 / 2  

S =  J , J r 2 + ( $ ) ]  d 6 = N 0 J 2 - .  
r0 

(2.17) 
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The present part of the relaxation process is somewhat more complicated, but it is not 
difficult to show that the relaxation time is of the order of magnitude 

(2.18) 

As No-  N, f - N" and a typical value of ro is of the order IJN, the exponent is seen 
to be a + 1, and so again in the region 1.5-1.6. Comparing r2 with r , ,  (2.13), one finds 
that both processes play a role in the total relaxation process. 

Collecting the results (2.7)-(2.18), which ignore the fluctuations, one finds that the 
endpoint of the polymer unwinds along a trajectory with a shape which is sketched 
in figure 2. We should stress that the actual movement of the endpoint could deviate 
substantially from the sketched trajectory as a result of the heat motion of the medium 
(the term E in (2.6)). An analytical calculation which takes these fluctuations into 
account is very difficult indeed. This justifies a numerical approach, which forms the 
subject of the next section. 

J 

I 

Figure 2. Quatitative feature of the 'average' trajectory followed by the endpoint of a 
disentangling polymer. 

3. Brownian molecular dynamics 

The model which forms the basis of the numerical simulation consists of a string of 
N mass points constrained to move in a plane. Between each pair of neighbouring 
masses a spring force acts, which has a finite equilibrium distance 1. The chain is 
shuffled around by random Brownian forces. All details are identical to the model 
previously used by Michels and Wiegel (1986) to which paper we refer for details. I t  
should be pointed out that the proper way to generate (closed) polymer configurations 
has formed the subject of several recent papers. The various ways of applying the 
Monte Carlo method have been discussed by Frank-Kamenetskii and Vologodskii 
(1981). In the present study we use Brownian molecular dynamics. At the origin of 
coordinates one places an impenetrable disc of radius 1. This is realised by defining 
a centrifugal force 

if 0 < r, < I ( 3 . 1 ~ )  

= O  if r, > 1. (3 . lb)  
In this equation, the force constant a is such that the force is strongly repulsive inside 
the disc and ro is the position of mass point i = 1,2,  . . . , N. 
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During the simulation we keep the location r, of the first mass point fixed in a 
position on the x axis with polar coordinates r , ,  8 ,  = 0. At time t = 0 the original 
positions r , ,  r z ,  . . . , rN are chosen to lie in some arbitrary way, such that the chain 
encircles the disc at the origin exactly once in a counterclockwise direction (i.e. 

For t > 0, we proceed in two steps. Firstly the movement of the chain is followed 
using the method of Michels and Wiegel (1986), with the extra restriction that the N t h  
mass point can only move along the positive x axis ( e ,  fixed at 27r). After a certain 
length of time the initial configuration of the chain is randomised. Secondly, the 
restriction e, = 27r is dropped and all N mass points ( i  = 1, 2 ,  . . . , N) are permitted 
to move without constraints. During the ensuing process of unwinding, the polar 
coordinates r N ( t ) ,  O N ( ? )  of the endpoint are stored in memory. This procedure was 
repeated many times (for several values of N )  starting from a newly randomised initial 
configuration. 

For each run the program calculated (i) the first passage time of the endpoint, i.e. 
the first time (after starting the second step) that O N ( ? )  obtains a negative value and 
(ii) the values of r N ( t )  and e , ( ? )  at narrowly spaced intermediate times. Afterwards, 
by averaging over the ensemble of many runs, we calculated (a )  the averages ( r N ( f ) )  
and (@,( t ) )  and (b) the distribution of the first passage time. 

In  our simulations we used chains with N = 64 and N = 96. For each value of N 
we chose r o l l  = 7 ,  9, 12 or 16. For each combination of N and r o l l  we averaged over 
500 runs. In figure 3 the behaviour of ( r N ( f ) )  and (e,( t ) )  is shown for the case N = 64, 
ro/ 1 = 9. It should be noticed that the limiting value of ( r ,  ( t ) )  for large times is = 11.5 1, 
in excess of the value 9 1 which one might have expected. This difference is due to 
the steric repulsion of the chain by the obstacle at the origin. It is advantageous for 
the chain (after the unwinding has been completed!) to assume configurations which 
are preferably located some distance away from the obstacle, hence this effect is purely 
entropic. 

In figure 4, we show the temporal behaviour of the function po( t ) ,  which is defined 
as the probability that at time t there has been at least one passage of the endpoint 
through O N  = 0. A possible choice for the 'timescale for unwinding' would be the time 
T ~ ,  where =;. The value of T~ for the various values of N and ro l l  are 

eN = 2 7 r ) .  

2n 

n 

1 " " " " ' l  

12 

8 

r i l  

4 

0 i o  1000 2000 

t 

Figure 3. Average t ime behaviour of the radius ( r ,  ( I ) )  and  angle (8, ( I ) )  of a disentangling 
polymer. 
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0 1000 2000 
t 

Figure 4. Time dependence of the function po(f). 

Table 1. The value of T~ for different values of r o i l  for chains with N = 64 and N =96.  

ro l  N = 6 4  N = 9 6  

7 640 
9 560 

12 330 840 
16 250 730 

listed in table 1. The unit of time in figures 3, 4 and table 1 equals l ( m / k , T ) ” ’ .  It 
turned out that the qualitative behaviour of the functions in figures 3 and 4 is the same 
for all values of N and roll. 

These simulations indicate the importance of the fluctuations, as has already been 
mentioned at the end of § 2. The computing facilities needed were rather modest as 
all calculations were performed on a scalar mainframe. As the algorithm for Brownian 
molecular dynamics would be highly suitable for vectorisation, this form of numerical 
hammagraphy seems to carry some promise for the future. 
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